Achieving Mobile Payment Security Minus the Upgrade Costs

Here is a simple, cost effective way to achieve transaction security for mobile payments that allows easy and secure provisioning of cards. Most importantly, it is compatible with existing retail POS systems and does not require retailers to make software or hardware changes.

A LoopPay White Paper by George Wallner
When it comes to protecting users from fraud, the current electronic payment technologies for retail POS transactions (magnetic stripe cards, smart cards and mobile phones) all present significant challenges.

Magnetic stripe cards carry static data that can be easily copied and used time and again until their limit is reached or fraud is detected and the card cancelled.

Smart cards (such as EMV) contain a microchip that can "sign" transactions with cryptographically generated dynamic data based on a secret key stored in the card. Because the signature is cryptographically generated and is dynamic, smart cards are very effective against copy or replay fraud. The smart card concept has been adapted to contactless cards and mobile phones using NFC. The phones are equipped with a Secure Element (SE), which is essentially a chip that can sign transactions in a similar fashion to a smart card.

While it is relatively easy to make and securely provision smart cards, mobile phones are much harder to securely provision and manage. That’s because the card issuer cannot control them at any point in their lifecycle and also because the phones must support multiple cards with different protection schemes. Furthermore, the system requires a

![Diagram of NFC Mobile Payments](image)

Figure 1: NFC Mobile Payments. The credentials and keys are provisioned into the SE of the smartphone. Once provisioned, the SE can sign any number of transactions (within some risk profile). The card issuer trusts the SE and accepts transactions and credentials signed by the SE.

This document describes a practical tokenization scheme that adds security to mobile transactions while remaining fully compatible with existing POS terminals and retailer systems. **Mobile Tokenization** is intended for card issuers who are looking for a flexible and easy method to add security to magnetic stripe cards as they move from the physical cards onto Loop’s mobile LoopWallet and other virtual environments.

Security is always a compromise between protection and cost. A practical security system that gets adopted is better than a perfect one that stays on paper. Accordingly, **Mobile Tokenization** maintains compatibility with the existing retailer and acquirer infrastructure while providing good security at low cost.
complex chain of "trusted" entities, costly hardware in phones, and a slow multi-step card provisioning process — all of which makes widespread mobile payment adoption costly, complex and painful.

Tokenization’s Advantages and Constraints

Rather than empower the hardware (chip or phone) to sign transactions, tokenization is an alternative payment technology that converts the traditional card data, especially the Primary Account Number (PAN), into a token. The token is just a number, whose only function is to point to the original card data, which is stored in a secure host called the "Token Vault."

Protecting the PAN is one goal of tokenization. But unfortunately the PAN has become more than just an account identifier. Retailers, acquirers and cardholders all use the PAN for a variety of functions. The first six digits, (IIN or BIN) are used for routing. Some acquirers also use the first nine digits for routing. And the PAN is often used for refunds and dispute resolution. In addition, some retailers use the PAN to recognize frequent shoppers. Consumers use the PAN, or at least the part printed on receipts, to reconcile accounts (especially expense accounts).

In its classical form, tokenization obscures the entire PAN. Recent variations only tokenize part of the PAN, leaving the first six digits readable. They also rely on issuing new unique-BIN (IIN) PAN-s, so there is no chance that the randomized PAN coincides with an existing PAN. All of this effort requires that retailers modify their systems to use the token instead of the card number (PAN) for various functions, including loyalty. But tokens change, which raises a number of issues. How, for example, would retailers match tokens with customers? Would the retailer have to refer to an outside organization that maintains the Token Vault to match a token with an account? And what about consumers with receipts in one hand and statements in the other?

The alternative is to leave the PAN un-obscured and only tokenize other card data. While this leaves some exposure, it ensures compatibility with existing retailer systems, acquirers and consumer behavior, while still adding security. So how can this lighten the burden of mobile payments adoption — on the retailer and specifically on the retailer’s IT department?

![Figure 2: The Token Cycle](image)
Loop's Game Changer: Mobile Tokenization

Rather than empowering the phone (or its built-in Secure Element chip) to sign transactions, Mobile Tokenization relies on a central host to tokenize and distribute tokenized card data. This is possible because, unlike a smart card, a mobile phone is almost always connected to the network, which is the crucial game-changer that allows practical tokenization for these devices.

Compatibility with existing retail systems, meanwhile, is achieved by leaving the PAN (either fully or partially) readable. The Expiry and Service Code fields also remain readable. The rest of the card data, the Other Data and Discretionary Data fields, are replaced with a one-time token.

Loop's magnetic induction technology also enables contactless POS transactions that are compatible with existing POS terminals without hardware or software change. It can do this because it uses the ordinary magnetic stripe reader as the contactless data receiver. MST (magnetic secure transmission) formats the card data into simulated magnetic stripe tracks and transmits them via a pulsed magnetic field, which can be read by existing terminals. The contactless transfer distance is one to three inches (30 to 60 mm) and is extremely reliable.

MST essentially repurposes the existing magstripe readers for mobile payments so that mobile phones can make contactless card payments via the existing retail infrastructure — either by using an internal transmitter or an external accessory.

And because the track data is simulated it doesn’t have to be the original magstripe data; it can be dynamic tokenized card data. This offers an opportunity to replace magnetic stripe transactions with secure mobile transactions — all without the disruptive delays and the significant costs of retail system upgrades.

How Mobile Tokenization of Card Data Works

As stated earlier, retailers and acquirers need the Primary Account Number (PAN). Mobile Tokenization, however, tokenizes only part of the card data, leaving the PAN, Expiry Date and the Service Code (SVC) readable. These are data fields that retailers and acquirers use. The rest of the card data, the Other Data and the Discretionary data, are tokenized.
The tokenized part of the card data that replaces the Other Data and Discretionary Data fields is called the Token Part. It consists of two data elements: the Token Part Value (TPV) and the Token Mode Indicator (TMI).

The TPV consists of two data elements: the Token Part Value (TPV) and the Token Mode Indicator (TMI).

Because the Token Part Value is created through a cryptographic process whose key is secret, and because it includes dynamic data that changes with every new token, an attacker cannot predict what the next valid token should be. And because a token is valid for only one transaction, used tokens cannot be reused for fraud. Tokens are generated in a secure host environment and are encrypted and distributed to the mobile phones over the air. The Token Mode Indicator allows card issuers to identify tokenized cards, validate them and manage the tokens' lifecycles.

Creating the TPV

The Token Part Value is a cryptographically generated one-time token that is derived from the following data elements:

1. Card data elements: PAN, Expiry, SVC
2. Token Sequence Number
3. HASH, obtained from the Discretionary data and the Loop Account ID

The HASH includes the card's original discretionary data (which includes the CVV) to link the CVV to the token. It also includes the Loop Wallet Account ID, which links the token to the user's account. By linking the account and CVV together, tokens become specific to a card and an account.

The key used to generate the TPV is generated at the time the card is first provisioned and it is changed regularly afterwards. The HASH is also generated at
the time of provisioning the card. Both are held in the database and later used for token verification.

The Token Sequence Number (TSN), which is one of the inputs to the token generation algorithm, is incremented each time a new token (TPV) is generated. Because of the new TSN value, and the encryption process that "randomizes" the output data, each new token will be very different than the previous one. The TSN therefore makes it impossible to predict the next valid token (TPV). Also, because a token is cancelled after it is used, a replay attack will also not work. It is expected that the issuer's system will change the key used to generate the TPV at least once before the TSN wraps around (i.e. reaches 9999). This means that tokens do not repeat in a predictable fashion.

TVP Generation Algorithm

The algorithm is based on the public OATH One Time Password algorithm. The main difference versus OATH is that the inputs, which are derived from the card data and the account ID, comprise 128 bits while the extracted TPV is 8 digits.

By including the HASH, the TPV algorithm incorporates into the token value the card's original discretionary data and the LoopWallet user's Account number. This process adds an additional layer of security, which ensures that a token is both invalid for a different card, but also invalid when someone attempts to use the same card from a different account using the same issuer key. An attacker would not only have to know the issuer key but also the LoopWallet user’s Account Number, which is never visible outside the card issuer's authentication server due to the HASH generation process.

Is the magnetic stripe obsolete?

Yes, it is obsolete for financial transactions that don't require a PIN. The problem is the card: it is static and its data can be copied. Cards with a PIN, or retailer cards with low financial value — mostly cards where the cost of adding a chip is prohibitive — will continue using the magnetic stripe for a long time. In any case, the problem is with the card, not the reader. The card is static. The reader can read dynamic information and therefore it is possible to have good security via the magstripe reader. It is just an interface. The card is obsolete; the reader is not.
In Conclusion

Mobile Tokenization is simple proven technology available today that addresses all magstrip card security issues without the need for the retailer to change any infrastructure. The technology provides greater end-user convenience when enabling mobile devices for payments, liberating consumers from plastic cards while also giving merchants the data they need to orchestrate effective customer engagement. Loop’s Tokenization Solution works with today’s retail payment infrastructure and will work tomorrow with future infrastructures that comply with the EMVCO Tokenization Framework standard.

As this trend toward mobile payments gains momentum, retailers want two things: greater security plus a way to minimize large-scale infrastructure investment. Mobile Tokenization addresses both needs simultaneously.

About George Wallner | Inventor of the Modern POS Terminal

George Wallner’s plan to transform payments as we know it was hatched in his kitchen. The year was 1978 and he and his brother Paul, both engineers, had been tinkering with a few ideas focused on developing large telephone systems and data collection networks. The Wallners recognized that merchants needed a way to expedite consumer payments at the point of sale using the mag stripe cards that they now preferred. And the company that they formed, Hypercom, was the first ever to enable the electronic payments that are the bedrock of the modern payments industry.

Hypercom grew into a global provider of POS terminals and support networks. Wallner served in various roles there, including CEO, Chairman and Chief Technologist, taking the company public in 1997.

In 2006, Wallner went on to invest in ROAM Data, a leading vendor of mobile card acceptance equipment and software that was later acquired by Ingenico in early 2013. His latest venture, LoopPay, really comes full circle. It has developed a practical mobile payment solution that enables smart-phones to be used for card present payments at the point of sale without requiring merchants to install any new hardware or software – leveraging the technology standard that powered the point of sale terminals he invented some two decades before.

About Loop Pay

Loop invented the world’s first mobile-wallet solution that allows consumers to securely store and organize all of their plastic cards (payment, gift, loyalty, ID, membership cards) and pay with their Loop enabled devices (smart accessories, smartphones, smart watches) virtually everywhere. Based in Boston, Mass., Loop’s patented Magnetic Secure Transmission (MST) technology turns existing mag stripe readers into mobile payment readers without any change or cost by the merchants or their payment processors. Loop provides not only breakthrough convenience for consumers to organize and pay with mobile, but also the highest level of payment security to protect consumer’s card data. Loop is a Level One PCI Certified Payment Provider. To learn more and order Loop products, visit www.looppay.com.